NUCLEOPHILIC OPENING OF EPOXIDES BY MIXED CUPRATES

Rolf-Dieter Acker

Department of Chemistry, Stanford University

Stanford, California 94305

(Received in USA 5 July 1977; received in UK for publication 9 August 1977)

The reaction of an epoxide with lithium dialkyl cuprates (<u>1</u>) is a well established synthetic route, but usually a large excess of <u>1</u> is required and only one of the two alkyl groups of the organometallic reagent is transferred.¹ Mixed cuprates <u>2</u> have been developed (e.g.

R ₂ CuLi	RR'CuLi	R(CN)CuLi
<u>1</u>	2	<u>3</u> , R=CH ₃ <u>4</u> , R=n-Bu

R=alky1, R'=PhS, PhO, t-BuO², pentynyl³) circumventing these limitations in some type of cuprate reactions but no mixed cuprate has been found for the effective opening of epoxides.⁴

We would like to report that lithium organo(cyano)copper(I) reagents 3 and $4^{3,6}$ react with epoxides to form the corresponding alcohols using stoichiometric amounts of the cuprate reagent 3 or 4 (Table I). The yields are generally comparable to those obtained from reactions with the dialkyl cuprate species (5:88%, 4 equiv. of $CH_{3}Li^{7}$; 9:67%, 4 equiv. of $CH_{3}Li^{5}$), the epoxides are attacked at the less steric hindered side¹ (products 5 - 8, 10, 11) or at the more electrophilic carbon atom (products 9, 10).

The conversion of styrene oxide shows an interesting example of product distribution as a function of the organometallic reagent. Treatment of <u>15</u> with alkyl Grignard compounds leads to a mixture (approx. 1:1) of 13 and the rearranged alcohol <u>16</u>, whereas dialkyl magnesium

compounds yield <u>13</u> as the only product.⁸ In the reaction with the cuprates <u>3</u> and <u>4</u> the formation of the β -alcohol <u>13</u> is favored, but the alternative α -alcohol <u>14</u> is also detectable (Scheme I).

Epoxide	R(CN)CuLi	Product	No.	Yield % ^a
	снз	AT OF CU OF D	5	95 ^b
^{CH} ₃ - ^{CH} ₂ - ^{CH} - ^{CH} - ^{CH} ₂	n-Bu	$CH_3 - CH_2 - CH_2 - CH_2 - CH_2$	<u>6</u>	92
	сн ₃	CH - (CH) - CH-CH - B	<u>7</u>	71
^{CH} 3 ^{-(CH} 2)7 ^{-CH} -CH ²	n-Bu	$\operatorname{GH}_3^{-}(\operatorname{GH}_2^{-7})^{-6}_{\mathrm{OH}}$	<u>8</u>	83
	CH3		<u>9</u>	43
Ch ₃ -Ch-ch-c0 ₂ C ₂ ^h 5	n-Bu	OH R	<u>10</u>	48
PLO CH CH-CH	CH3	Рь-О-СН -СН-СН -В	<u>11</u>	87
Ph-0-Ch ₂ -Ch-Ch ₂ 2 \ ₀ /2	n-Bu	on o	<u>12</u>	95
	CH	Ph R Ph OH	<u>13a</u>	81
Ph-CH-CH2	3	 CH CH	<u>14a</u>	18
	- Per	OH CH2 R	<u>13b</u>	74
<u>15</u>	n-Bu	<u>13</u> <u>14</u>	<u>14b</u>	21

Table	I.	Reactions	of	Cyanocuprates	with	Various	Epoxides
-------	----	-----------	----	---------------	------	---------	----------

^aIsolated yields; ^byield determined by glc.

The epoxycyclohexenes <u>17</u> and <u>18</u> are also opened by the cyanocuprates <u>3</u> and <u>4</u> (Scheme II), in these cases two equivalents of the reagents are necessary to afford reasonable yields. Although <u>17</u> and <u>18</u> are not converted to the same extent as is reported with dialkyl cuprates, 1,5<u>3</u> and <u>4</u> can compete with <u>1</u> considering the ratio RLi:epoxide in some of these reactions (Table II).

	Epoxide <u>17</u>				Epoxide <u>18</u>			
Cuprate	Equiv. RLi	Conc. (M)	Prod.	Yield %	Equiv. RLi	Conc. (M)	Prod.	Yield 7
(CH ₃) ₂ CuLi	10	0.4	<u>19</u>	75 ⁵	5	0.2	<u>21</u>	65
CH ₃ (CN)CuLi	. 1	0.4	<u>19</u>	29	1	0.4	<u>21</u>	25
CH ₃ (CN)CuLi	2	0.4	<u>19</u>	58	2	0.4	<u>21</u>	44
(n-Bu) ₂ CuLi	10	0.1	<u>20</u>	60 ¹	5	0.1	<u>22</u>	73
n-Bu(CN)CuLi	1	0.4	<u>20</u>	36	1	0.4	22	34
n-Bu(CN)CuLi	2	0.4	<u>20</u>	66	2	0.4	<u>22</u>	63

General Procedure

To a mixture of 180 mg of cuprous cyanide⁹ (2 mmol) and 4.0 ml of ether, 2 mmol of alkyllithium were added under argon at -78°C. The temperature was slowly raised until the cuprous cyanide was completely dissolved (ca. -30°C). After addition of the epoxide in 0.5 ml of ether the reaction mixture was stirred for 0.5-1 h, then warmed up to 0°C and kept at this temperature for additional 5-6 hours. Ammonium chloride or diluted hydrochloric acid¹⁰ was used for the workup followed by extraction of the product with ether.

Acknowledgment

The author wishes to thank Professor E. E. van Tamelen for encouragement and the Max Kade Foundation for financial support.

References and Notes

- 1. For a review see G. H. Posner, Org. React., 22, 253 (1975)
- 2. G. H. Posner, C. E. Whitten, and J. J. Sterling, J. Am. Chem. Soc., 95, 7788 (1973)
- 3. W. M. Mandeville and G. M. Whitesides, J. Org. Chem., <u>39</u>, 400 (1974)
- 4. There is only one attempt of opening epoxides by mixed cuprates reported in literature.⁵ The authors stated that "lithium methylcyano(bistriethyl phosphite)copper(I) reacted only slightly with cyclohexene oxide."
- 5. R. W. Herr, D. M. Wieland, and C. R. Johnson, J. Am. Chem. Soc., <u>92</u>, 3813 (1970)
- J. -P. Gorlier, L. Hamon, J. Levisalles, and J. Wagnon, J. C. S. Chem. Comm., 1973, 88;
 K. Koostra, J. Berlan, M. L. Chapmau, and W. Chodkiewicz, <u>Bull. Soc. Chim. France</u>, 1975, 1284
- 7. R. W. Herr and C. R. Johnson, J. Am. Chem. Soc., 92, 4979 (1970)
- C. Golumbic and D. L. Cottle, J. <u>Am. Chem. Soc.</u>, <u>61</u>, 996 (1939); J. Denian, E. Henry-Basch, and P. Freon, Bull. Soc. Chim. France, 1969 (12), 4414
- 9. Suppl. from Allied Chemical, dried over phosphorous pentoxide and used without further purification.
- 10. H. O. House, Org. React., 19, 1 (1972)